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Introduction to the tumor microenvironment and the immune response 
The immune system is capable of recognizing and eliminating tumor cells in the tumor microenvironment. 
Innate and adaptive immunity act as a complementary network of self-defense against foreign threats.1 This 
ability to recognize foreign threats (nonself) as distinct from normal cells (self), is an essential feature of 
the immune system.2-4 Despite originating from normal cells, tumor cells can be recognized as nonself 
through production of tumor antigens.5  

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  Revealing the Potential of the Immune System in Cancer 
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Antitumor activity of the innate and adaptive immune responses 

 

 
 

Innate immune response 
The first line of defense, it rapidly identifies and 
attacks tumor cells without antigen specificity.1,6-8  
It recognizes activating and inhibitory signals from 
target cells to distinguish self from nonself.9-11 
Natural Killer (NK) cells are the main effector cells 
of innate immunity.1 

 

 
 

Adaptive immune response 
An antigen-specific response that is activated 
by recognition of tumor antigens (nonself).1,8 
Once activated, it can be sustained through a 
durable memory response.12  

Cytotoxic T cells are the main effector cells of 
adaptive immunity.1 

 

The antitumor activity of NK cells and cytotoxic T cells is regulated through a network of activating and 
inhibitory signaling pathways:4,13,14 

 

Activating Pathways: 
Stimulating pathways trigger 
immune responses 
 

 

Inhibitory Pathways: 
Pathways that counterbalance  
immune activation  

The balance between activating and inhibitory pathways normally enables the immune system to attack 
tumor cells, while sparing healthy cells.13 

 
 
Key stages of the antitumor immune response 
In both the innate and adaptive immune responses, immune cells have the potential to recognize and 
eliminate tumor cells. There are three principal stages in this process:  
 

   

Presentation 
The innate immune system rapidly 
identifies and attacks tumor cells. 
Tumor cell death releases tumor 
antigens, which can activate the 
cytotoxic T cells of the adaptive 
immune system.6,15 

Infiltration 
Tumor antigens and other factors 
attract immune cells to the tumor 
site, where they invade and attack.15  

Elimination 
Activated cytotoxic T cells 
recognize tumor cells as the 
source of the antigen and target 
them for elimination.15 
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Tumor cells can evade and suppress immune activity 
In order to survive and grow, tumor cells employ different strategies to outsmart the stages of the antitumor 
immune response. These mechanisms range from failing to present tumor antigens, to increasing expression 
of inhibitory proteins to prevent elimination by cytotoxic T cells.16-20 The success of these strategies 
determines the ability of immune cells to react to the tumor.21 
 

 

Immune pathways combine to refine response  
The three stages of the immune response—presentation, infiltration, and elimination—are regulated 
through a network of activating and inhibitory signaling pathways that combine to maintain immune 
balance.4,14 Reestablishing the pathways that are impaired within tumors is a key focus of ongoing Immuno-
Oncology research. 

 

 
 

 
 

 

      Modulating immune pathways in combination may enhance the immune response, as   
suggested by preclinical data.22-25 
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Select pathways that modulate NK cell activity 
Current research is investigating the following NK cell mechanisms to understand how they can be 
modulated to restore the body's natural ability to fight cancer.  

Activating pathway 

 

SLAMF7 is an activating receptor on the surface of NK cells and other immune cells.26 When 
engaged, SLAMF7 activates NK cells, the rapid responders of the immune system and the 
body’s first line of defense against cancer.7,27 

Inhibitory pathway 

 

KIR is an immune checkpoint receptor on the surface of NK cells that acts to stop NK cells 
from killing normal cells.10 

 

 
 
Select pathways that modulate effector T cell activity 
Current research is investigating the following effector T cell mechanisms to understand how they can be 
modulated to restore the body's natural ability to fight cancer.  

Activating pathways 

  

CD137 is an activating receptor on the surface of NK cells and T cells that can stimulate them 
to reproduce and generate antitumor activity.28,29 

 

GITR is an activating receptor on the surface of T cells and other immune cells that helps to 
enhance cell reproduction and generate antitumor activity.30-32 

 

OX40 is an activating receptor on the surface of activated cytotoxic T cells and Tregs.33-35  
OX40 plays a dual role in the immune response, both activating and amplifying T-cell 
responses.36-39 

 
Inhibitory pathways 

  

CTLA-4 is an immune checkpoint receptor on T cells that plays a key role in preventing T-cell 
overactivation.40-43 CTLA-4 signaling diminishes the ability of memory T cells to sustain an 
immune response.44 

 

PD-1 is an immune checkpoint receptor on cytotoxic T cells that plays a key role in T-cell 
exhaustion and prevention of autoimmunity.45-47 

 

LAG-3 is an immune checkpoint receptor on the surface of both activated cytotoxic and 
regulatory T cells (Tregs).48,49 LAG-3 can negatively regulate T-cell proliferation and the 
development of lasting memory T cells.50 
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TIGIT is an immune checkpoint receptor expressed on the surface of cytotoxic, memory, and 
regulatory T cells (Tregs), as well as natural killer (NK) cells.51,52 On all of these cells, TIGIT can 
play a role in immune suppression.51-53 
 
 

 
Select pathways that modulate non-effector cell activity 
Current research is investigating the following non-effector cell mechanisms to understand how they can be 
modulated to restore the body's natural ability to fight cancer.  

Inhibitory pathways 
 

 

CD73 is a cell-surface enzyme on Tregs. CD73 is a critical checkpoint in the production of 
adenosine, which is a powerful inhibitor of the antitumor immune response, including 
proliferation and production of cytokines.54  

 

IDO is an intracellular enzyme that initiates the breakdown of tryptophan, an amino acid that 
is essential for T-cell survival.55-57  

 

CSF1R is a receptor on the surface of macrophages and other cells of the myeloid lineage.58 
CSF1, the ligand for CSF1R, is a dominant regulator of macrophage differentiation and 
function.59  

 

 
 
 
 
 

  

Ongoing Immuno-Oncology research focuses on these select signaling pathways, either alone or in 
combination, to understand how they can be modulated to restore the body's natural ability 

 to fight cancer. 
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Immune-biomarkers are indicators of immune activity  
Immune-biomarkers are measures of activity within the tumor microenvironment, differing from established 
gene mutation biomarkers, such as BRAF and EGFR.60-63 

 

As components and regulators of the immune response, immune-biomarkers include:60 

    

Tumor-infiltrating 
immune cells 

Secreted peptides Cell surface proteins Immunosuppressive cells 

 

 

Exploratory immune-biomarkers  
New immune-biomarkers are now being investigated across tumor types: 65-76 

 

 
 

 

  Exploring Predictors of Response: Immune-Biomarkers 

Evaluating multiple immune-biomarkers may provide a more realistic representation of the         
tumor microenvironment, as well as a more accurate and comprehensive assessment of              

clinical relevance.63,64 

The field of immune-biomarkers aims to characterize the ongoing interactions between the 
immune system and cancer.60 
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Immuno-Oncology is a different approach to fighting cancer  
Immuno-Oncology seeks to activate the body’s natural immune response to fight cancer. This is a 
fundamentally different approach to cancer treatment.  

With this new approach comes unique considerations and distinctive characteristics that continue to be 
researched, such as: 

» Immune responses have the potential to deepen and sustain over time 

» Unique patterns of response, such as pseudo-progression 

» Unique endpoint considerations 

» Immune-mediated adverse reactions 

 
 

Immune responses have the potential to deepen and sustain over time 

The immune response evolves and expands over time by constantly recognizing and remembering tumor 
antigens. This ability—to propagate and perpetuate—suggests the intelligent nature of the immune 
response.15 

Immune responses are dynamic and have the potential to improve and deepen over time .77 

 
 
 

 
 
 

  Evolving Clinical Expectations in Immuno-Oncology 

As the immune response continues to expand, some cytotoxic T cells mature into memory T cells that 
may provide long-term immune protection, even if the original stimulus is no longer present.12,78 
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Pseudo-progression may reflect development of antitumor immunity 
The nature of the antitumor immune response can create the appearance of disease progression, either as 
tumor growth or appearance of new lesions.79 This is known as pseudo-progression. Pseudo-progression 
does not reflect tumor cell growth, but may be misclassified as disease progression.79,80 

 
Tumors may appear to grow or new lesions may appear when immune cells infiltrate the tumor site.79 
Due to the time required to mount an adaptive immune response, pseudo-progression may also reflect 
continued tumor growth until a sufficient response develops.79,81 

 

 Baseline assessment First assessment Later assessment 

Disease 
progression 

 

Pseudo-
progression 

 

 
 
Pseudo-progression may be considered until disease progression can be confirmed 
While uncommon, pseudo-progression is an important consideration when evaluating response to 
Immuno-Oncology therapies.81 Histologic confirmation is not always possible, but close monitoring of the 
following factors may help identify pseudo-progression: 79,82 
 

  Disease progression Pseudo-progression 

Performance status Deterioration of performance Remains stable or improves 

Systemic symptoms Worsen May or may not improve 

Symptoms of tumor    
enlargement Present May or may not be present 

Tumor burden     
Baseline Increase Initial increase followed by response 

New lesions Appear and increase in size 
Appear then remain stable and/or 

subsequently respond 

Biopsy may reveal Evidence of tumor growth Evidence of immune-cell infiltration 

 

NK Cell 

T Cell 
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Endpoint considerations for Immuno-Oncology research 
The criteria currently used to assess potential benefit of cancer therapies are based on surgery, radiation 
therapy, and chemotherapy.83 However, for Immuno-Oncology, a different way to fight cancer, a more 
comprehensive approach to endpoint assessment may be needed to recognize potential benefit.84-88  

 
Overall survival (OS), progression-free survival (PFS), and response rate are among endpoints used to 
measure outcomes in oncology research.89,90 OS is the gold standard to assess therapeutic benefit when 
possible.90  
 
In addition, key measures of response are magnitude (size)—measured as the proportion of patients with a 
predefined decrease in tumor burden, called the Objective Response Rate (ORR)—and duration (time)—
assessed as the time from initial tumor response to disease progression, called the Duration of Response 
(DoR).89 

 

 
Assessment of these measures in combination can provide a broad and comprehensive picture of the 
difference between the investigational arm and the control arm with respect to PFS and OS.85-87,91  
 

 
 
 
 
 
 
 

Applying multiple measures can illustrate the full scope of clinical benefit. 
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Immune-mediated adverse reactions  
Immuno-Oncology therapies that modulate immune pathways may enable the immune system to attack 
healthy cells along with tumor cells. The effects are known as immune-mediated adverse reactions.92 
  
When managing complications of immune-mediated adverse reactions, please consider: 

» Patients, caregivers, and physicians should be educated to remain vigilant throughout and after 
Immuno-Oncology treatment to minimize complications, some of which may be life threatening92 

» In addition, treatment algorithms are available for use by healthcare providers to assist them in 
managing immune-mediated adverse reactions93 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

As research in immune system activation advances and more data are made available, 
understanding and appropriate management of immune-mediated adverse reactions will evolve.94 
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Depth of evidence for the immune response to cancer 
Both solid tumors and hematologic malignancies are able to induce an immune response that can regulate their 
growth. This ability is known as tumor immunogenicity.95,96 The body is able to recognize and attack cancer 
through the following mechanisms: 
 
 

Presentation 
Traditionally immunogenic tumors are defined by a high rate of mutations.97 These 
mutations create tumor antigens that can be recognized by the immune system, 
activating an antitumor immune response.98 
 
 
 
Infiltration 
Tumor-infiltrating immune cells are present in the tumor microenvironment.99-111 
Their presence demonstrates their capacity to identify and migrate to tumor cells.112 

 
 
 
Elimination 
Early in their development, some tumors display evidence of spontaneous 
regression.113 This suggests that the immune system is able to recognize and 
eliminate some tumor cells, and supports the concept that the body’s own immune 
system has the ability to induce an antitumor response against cancer.113,114 

 

 Realizing the Potential of Immuno-Oncology Research 
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Broad potential of Immuno-Oncology research  
Evidence for tumor immunogenicity across a wide range of solid tumors and hematologic malignancies 
provides the rationale for the breadth of Immuno-Oncology research across tumor types: 115 
 

  
Tumor Type 

Evidence for tumor immunogenicity 

PRESENTATION INFILTRATION ELIMINATION 
Presence of somatic 

mutations 
Evidence of immune-cell 

infiltration 
Evidence of spontaneous 

regression 
Bladder97,109 97 109   
Breast111,116 116 111  
Colorectal110 110 110  
Gastric/Esophageal102,117 117 102  
Glioblastoma98,100 98 100  
Head & Neck103,118 118 103  
Hepatocellular107 107 107  
Lung97,102 97 102  
Melanoma97,102,113 97 102 113 

Ovarian106,119 119 106  
Pancreatic110 110 110  
Prostate104,120 120 104  
Renal97,105 97 105 105 

Non-Hodgkin Lymphoma99,121 121 99  
Hodgkin Lymphoma108,122 122 108  
Leukemia123 123   
Multiple Myeloma124,101 124 101  
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For more detailed information on the science behind Immuno-Oncology, please visit www.iohcp.com. 

Immuno-Oncology research is constantly evolving  
 
Some of the ongoing research at Bristol-Myers Squibb focuses on: 
 

» Building an understanding of the dynamic mechanisms that govern the immune system’s 
response to cancer 

» Understanding the role of immune signaling pathways, either alone or in combination, and 
how they can be modulated to restore the body’s natural ability to fight cancer 

» Understanding predictors of response, such as immune-biomarkers, to help identify 
patients who are more likely to benefit from Immuno-Oncology therapies 

» Developing a more comprehensive approach to endpoint assessment, to better recognize 
the potential benefit of Immuno-Oncology research 

 

The potential of Immuno-Oncology research continues to expand, driven by the many 
patients with advanced cancer who await the offer of renewed hope and the potential 
of a longer life. 
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